Paper Reading AI Learner

Detect2Interact: Localizing Object Key Field in Visual Question Answering with LLMs

2024-04-01 14:53:36
Jialou Wang, Manli Zhu, Yulei Li, Honglei Li, Longzhi Yang, Wai Lok Woo

Abstract

Localization plays a crucial role in enhancing the practicality and precision of VQA systems. By enabling fine-grained identification and interaction with specific parts of an object, it significantly improves the system's ability to provide contextually relevant and spatially accurate responses, crucial for applications in dynamic environments like robotics and augmented reality. However, traditional systems face challenges in accurately mapping objects within images to generate nuanced and spatially aware responses. In this work, we introduce "Detect2Interact", which addresses these challenges by introducing an advanced approach for fine-grained object visual key field detection. First, we use the segment anything model (SAM) to generate detailed spatial maps of objects in images. Next, we use Vision Studio to extract semantic object descriptions. Third, we employ GPT-4's common sense knowledge, bridging the gap between an object's semantics and its spatial map. As a result, Detect2Interact achieves consistent qualitative results on object key field detection across extensive test cases and outperforms the existing VQA system with object detection by providing a more reasonable and finer visual representation.

Abstract (translated)

本地化在增强VQA系统的实用性和精确性方面发挥着关键作用。通过使系统能够精细地识别并交互特定物体部分,它显著提高了系统在动态环境(如机器人学和增强现实)中提供相关且准确响应的能力。然而,传统系统在准确地将图像中的物体映射到生成细微和空间感知响应方面面临挑战。在这项工作中,我们引入了“Detect2Interact”,通过引入一种高级的细粒度物体视觉关键词检测方法来解决这些挑战。首先,我们使用 segment anything model (SAM) 生成图像中物体的详细空间地图。接下来,我们使用 Vision Studio 提取语义物体描述。最后,我们利用 GPT-4 的常识知识,使物体语义和空间图之间建立联系。因此,Detect2Interact在广泛的测试用例中实现了对物体关键字段检测的一致质保,并超过了现有VQA系统。通过提供更加合理和精确的视觉表示,使其在动态环境中提供更加相关和准确的响应。

URL

https://arxiv.org/abs/2404.01151

PDF

https://arxiv.org/pdf/2404.01151.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot