Paper Reading AI Learner

RoofDiffusion: Constructing Roofs from Severely Corrupted Point Data via Diffusion

2024-04-14 15:50:10
Kyle Shih-Huang Lo, Jörg Peters, Eric Spellman

Abstract

Accurate completion and denoising of roof height maps are crucial to reconstructing high-quality 3D buildings. Repairing sparse points can enhance low-cost sensor use and reduce UAV flight overlap. RoofDiffusion is a new end-to-end self-supervised diffusion technique for robustly completing, in particular difficult, roof height maps. RoofDiffusion leverages widely-available curated footprints and can so handle up to 99\% point sparsity and 80\% roof area occlusion (regional incompleteness). A variant, No-FP RoofDiffusion, simultaneously predicts building footprints and heights. Both quantitatively outperform state-of-the-art unguided depth completion and representative inpainting methods for Digital Elevation Models (DEM), on both a roof-specific benchmark and the BuildingNet dataset. Qualitative assessments show the effectiveness of RoofDiffusion for datasets with real-world scans including AHN3, Dales3D, and USGS 3DEP LiDAR. Tested with the leading City3D algorithm, preprocessing height maps with RoofDiffusion noticeably improves 3D building reconstruction. RoofDiffusion is complemented by a new dataset of 13k complex roof geometries, focusing on long-tail issues in remote sensing; a novel simulation of tree occlusion; and a wide variety of large-area roof cut-outs for data augmentation and benchmarking.

Abstract (translated)

准确地完成和去噪屋顶高度图对于重建高质量的3D建筑至关重要。修复稀疏点可以提高低成本传感器使用并减少无人机飞行重叠。RoofDiffusion是一种新的端到端自监督扩散技术,特别适用于完成艰难、高度不连续的屋顶高度图。RoofDiffusion利用广泛可用的心跳图,可以处理多达99%的点稀疏和80%的屋顶面积遮挡(区域不完整性)。一种变体,No-FP RoofDiffusion同时预测建筑轮廓和高度。在屋顶特定基准和BuildingNet数据集上,No-FP RoofDiffusion的定量效果超过了目前最先进的未经指导的深度完成和代表性的修复方法。定性评估显示,RoofDiffusion对于包括AHN3、Dales3D和USGS 3DEP LiDAR等现实世界扫描的数据集非常有效。使用领先的City3D算法进行测试,使用RoofDiffusion预处理屋顶图显著提高了3D建筑重建。RoofDiffusion通过一个新的具有13k个复杂屋顶几何的 datasets,重点关注遥感中的长尾问题;一种新的树遮挡模拟;以及各种大面积屋顶切口,用于数据增强和基准测试而得到了补充。

URL

https://arxiv.org/abs/2404.09290

PDF

https://arxiv.org/pdf/2404.09290.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot