Paper Reading AI Learner

Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation

2024-04-16 13:47:27
Aaron Kujawa, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren

Abstract

Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes and thus presents significant practical challenges for deep learning approaches. We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation and then recovers original labels. Using a greedy graph colouring algorithm, our method automatically groups and merges multiple spatially separate labels prior to model training and inference. The merged labels may be semantically unrelated. A deep learning model is trained to predict merged labels. At inference time, original labels are restored using atlas-based influence regions. In our experiments, the proposed approach reduces the number of labels by up to 68% while achieving segmentation accuracy comparable to the baseline method without label merging and splitting. Moreover, model training and inference times as well as GPU memory requirements were reduced significantly. The proposed method can be applied to all semantic segmentation tasks with a large number of spatially separate classes within an atlas-based prior.

Abstract (translated)

全脑分割需要推断大型图像卷积区中的数百个分割标签,因此对于深度学习方法来说,它带来了显著的实践挑战。我们引入了标签合并和分割方法,一种首先极大地减少了学习为基础的全脑分割所需的有效标签数量,然后恢复原始标签的方法。使用贪婪的图着色算法,我们的方法在模型训练和推理之前自动对多个空间上分离的标签进行分组和合并。合并的标签可能具有语义无关性。一个深度学习模型用于预测合并的标签。在推理时,使用基于解剖结构的感子区恢复原始标签。在我们的实验中,与不进行标签合并和分割的基线方法相比,将标签数量减少了68%,同时实现与基线方法相当的分割精度。此外,模型训练和推理时间以及GPU内存需求都显著减少。所提出的方法可以应用于所有具有大图卷积区中的大量空间上分离类别的语义分割任务。

URL

https://arxiv.org/abs/2404.10572

PDF

https://arxiv.org/pdf/2404.10572.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot