Paper Reading AI Learner

Inverse Neural Rendering for Explainable Multi-Object Tracking

2024-04-18 17:37:53
Julian Ost, Tanushree Banerjee, Mario Bijelic, Felix Heide

Abstract

Today, most methods for image understanding tasks rely on feed-forward neural networks. While this approach has allowed for empirical accuracy, efficiency, and task adaptation via fine-tuning, it also comes with fundamental disadvantages. Existing networks often struggle to generalize across different datasets, even on the same task. By design, these networks ultimately reason about high-dimensional scene features, which are challenging to analyze. This is true especially when attempting to predict 3D information based on 2D images. We propose to recast 3D multi-object tracking from RGB cameras as an \emph{Inverse Rendering (IR)} problem, by optimizing via a differentiable rendering pipeline over the latent space of pre-trained 3D object representations and retrieve the latents that best represent object instances in a given input image. To this end, we optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties. We investigate not only an alternate take on tracking but our method also enables examining the generated objects, reasoning about failure situations, and resolving ambiguous cases. We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data and assessing camera-based 3D tracking on the nuScenes and Waymo datasets. Both these datasets are completely unseen to our method and do not require fine-tuning. Videos and code are available at this https URL.

Abstract (translated)

today,大多数图像理解任务的方法都依赖于前馈神经网络。虽然这种方法通过微调获得了 empirical 的准确性和效率,但同时也存在一些基本缺陷。现有的网络往往难以在不同的数据集上泛化,即使是相同任务。通过设计,这些网络最终在预训练的3D对象表示的潜在空间中进行推理,这是具有挑战性的。尤其是在试图根据2D图像预测3D信息时,这更是如此。我们提出将从RGB相机中的3D多对象跟踪重新建模为同义词{反向渲染(IR)问题,通过优化通过不同的渲染管道在预训练3D对象表示的潜在空间中进行优化,并检索在给定输入图像中最好地表示物体实例的潜在。为此,我们优化了一个在生成性潜在空间上进行的图像损失。我们研究了不仅是对跟踪的另一种看法,而且我们的方法还允许我们检查生成的物体,推理失败情况,并解决模糊情况。我们通过仅从合成数据中学习生成先验来评估我们的方法的泛化能力和扩展能力。我们在 nuScenes 和 Waymo 数据集上对相机基于3D跟踪的性能进行了评估。这两个数据集完全未见对我们的方法,也不需要微调。视频和代码可在此处 https:// URL 下载。

URL

https://arxiv.org/abs/2404.12359

PDF

https://arxiv.org/pdf/2404.12359.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot