Paper Reading AI Learner

BMapOpt: Optimization of Brain Tissue Probability Maps using a Differentiable MRI Simulator

2024-04-23 04:45:23
Utkarsh Gupta, Emmanouil Nikolakakis, Moritz Zaiss, Razvan Marinescu

Abstract

Reconstructing digital brain phantoms in the form of multi-channeled brain tissue probability maps for individual subjects is essential for capturing brain anatomical variability, understanding neurological diseases, as well as for testing image processing methods. We demonstrate the first framework that optimizes brain tissue probability maps (Gray Matter - GM, White Matter - WM, and Cerebrospinal fluid - CSF) with the help of a Physics-based differentiable MRI simulator that models the magnetization signal at each voxel in the image. Given an observed $T_1$/$T_2$-weighted MRI scan, the corresponding clinical MRI sequence, and the MRI differentiable simulator, we optimize the simulator's input probability maps by back-propagating the L2 loss between the simulator's output and the $T_1$/$T_2$-weighted scan. This approach has the significant advantage of not relying on any training data, and instead uses the strong inductive bias of the MRI simulator. We tested the model on 20 scans from the BrainWeb database and demonstrate a highly accurate reconstruction of GM, WM, and CSF.

Abstract (translated)

重建数字脑图在个体 subjects 形式为多通道脑组织概率图对于捕捉脑解剖变异、理解神经系统疾病以及测试图像处理方法来说至关重要。我们证明了第一个利用基于物理的差分 MRI 模拟器优化脑组织概率图(灰质 - GM,白质 - WM 和蛛网膜腔 - CSF)的框架。在观察到 $T_1$/$T_2$ 加权 MRI 扫描、相应临床 MRI 序列和 MRI 差分模拟器的基础上,我们通过反向传播模拟器输出与 $T_1$/$T_2$ 加权扫描之间的 L2 损失来优化模拟器的输入概率图。这种方法具有不依赖于任何训练数据的优势,而是利用了 MRI 模拟器的强大归纳偏差。我们在 BrainWeb 数据库的 20 个扫描上测试了该模型,并证明了 GM、WM 和 CSF 的重建高度准确。

URL

https://arxiv.org/abs/2404.14739

PDF

https://arxiv.org/pdf/2404.14739.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot