Paper Reading AI Learner

IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology

2024-08-29 09:57:55
Pardis Afshar, Sajjad Hashembeiki, Pouya Khani, Emad Fatemizadeh, Mohammad Hossein Rohban

Abstract

Histopathological image analysis is crucial for accurate cancer diagnosis and treatment planning. While deep learning models, especially convolutional neural networks, have advanced this field, their "black-box" nature raises concerns about interpretability and trustworthiness. Explainable Artificial Intelligence (XAI) techniques aim to address these concerns, but evaluating their effectiveness remains challenging. A significant issue with current occlusion-based XAI methods is that they often generate Out-of-Distribution (OoD) samples, leading to inaccurate evaluations. In this paper, we introduce Inpainting-Based Occlusion (IBO), a novel occlusion strategy that utilizes a Denoising Diffusion Probabilistic Model to inpaint occluded regions in histopathological images. By replacing cancerous areas with realistic, non-cancerous tissue, IBO minimizes OoD artifacts and preserves data integrity. We evaluate our method on the CAMELYON16 dataset through two phases: first, by assessing perceptual similarity using the Learned Perceptual Image Patch Similarity (LPIPS) metric, and second, by quantifying the impact on model predictions through Area Under the Curve (AUC) analysis. Our results demonstrate that IBO significantly improves perceptual fidelity, achieving nearly twice the improvement in LPIPS scores compared to the best existing occlusion strategy. Additionally, IBO increased the precision of XAI performance prediction from 42% to 71% compared to traditional methods. These results demonstrate IBO's potential to provide more reliable evaluations of XAI techniques, benefiting histopathology and other applications. The source code for this study is available at this https URL.

Abstract (translated)

病理学图像分析是准确癌症诊断和治疗规划的关键。尽管深度学习模型(特别是卷积神经网络)在這個領域取得了進展,但它們的“黑盒子”特點引起了對可解釋性和可信度的關注。可解釋性人工智能(XAI)技術旨在解決這些問題,但評估其有效性仍然具有挑戰性。目前基于遮挡的XAI方法的一个主要問題是,它們通常會生成离群(OoD)樣本,導致不準確的評估。在本文中,我們介紹了基于修复的遮挡(IBO),一種新的遮挡策略,它利用去噪扩散概率模型的特性來在歷史學圖像中修復被遮罩的區域。通過用真實的非癌症組織替換癌細胞區域,IBO最小化OoD artifacts並保留了數據完整性。我們通過CAMELYON16數據集進行實驗,分為兩個階段進行評估:第一階段,使用學習到的感知相似性(LPIPS)指標評估感知相似性;第二階段,通過曲线下面積(AUC)分析評估模型的預測影響。我們的研究結果表明,IBO顯著提高了感知準確性,與最優秀的現有屏蔽策略相比,LPIPS得分進步了近兩倍。此外,IBO將XAI性能預測的準確度從42%提高到71%,與傳統方法相比。這些結果表明,IBO具有提供更多可靠性的XAI技術的潛力,有助於病理學和其他應用。本研究的研究源代碼可在這個https URL找到。

URL

https://arxiv.org/abs/2408.16395

PDF

https://arxiv.org/pdf/2408.16395.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot