Paper Reading AI Learner

Feature Graph Learning for 3D Point Cloud Denoising

2019-07-22 05:02:12
Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo

Abstract

Identifying an appropriate underlying graph kernel that reflects pairwise similarities is critical in many recent graph spectral signal restoration schemes, including image denoising, dequantization, and contrast enhancement. Existing graph learning algorithms compute the most likely entries of a properly defined graph Laplacian matrix $\mathbf{L}$, but require a large number of signal observations $\mathbf{z}$'s for a stable estimate. In this work, we assume instead the availability of a relevant feature vector $\mathbf{f}_i$ per node $i$, from which we compute an optimal feature graph via optimization of a feature metric. Specifically, we alternately optimize the diagonal and off-diagonal entries of a Mahalanobis distance matrix $\mathbf{M}$ by minimizing the graph Laplacian regularizer (GLR) $\mathbf{z}^{\top} \mathbf{L} \mathbf{z}$, where edge weight is $w_{i,j} = \exp\{-(\mathbf{f}_i - \mathbf{f}_j)^{\top} \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j) \}$, given a single observation $\mathbf{z}$. We optimize diagonal entries via proximal gradient (PG), where we constrain $\mathbf{M}$ to be positive definite (PD) via linear inequalities derived from the Gershgorin circle theorem. To optimize off-diagonal entries, we design a block descent algorithm that iteratively optimizes one row and column of $\mathbf{M}$. To keep $\mathbf{M}$ PD, we constrain the Schur complement of sub-matrix $\mathbf{M}_{2,2}$ of $\mathbf{M}$ to be PD when optimizing via PG. Our algorithm mitigates full eigen-decomposition of $\mathbf{M}$, thus ensuring fast computation speed even when feature vector $\mathbf{f}_i$ has high dimension. To validate its usefulness, we apply our feature graph learning algorithm to the problem of 3D point cloud denoising, resulting in state-of-the-art performance compared to competing schemes in extensive experiments.

Abstract (translated)

URL

https://arxiv.org/abs/1907.09138

PDF

https://arxiv.org/pdf/1907.09138.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot