Paper Reading AI Learner

Only Time Can Tell: Discovering Temporal Data for Temporal Modeling

2019-07-19 02:00:23
Laura Sevilla-Lara, Shengxin Zha, Zhicheng Yan, Vedanuj Goswami, Matt Feiszli, Lorenzo Torresani

Abstract

Understanding temporal information and how the visual world changes over time is a fundamental ability of intelligent systems. In video understanding, temporal information is at the core of many current challenges, including compression, efficient inference, motion estimation or summarization. However, in current video datasets it has been observed that action classes can often be recognized without any temporal information from a single frame of video. As a result, both benchmarking and training in these datasets may give an unintentional advantage to models with strong image understanding capabilities, as opposed to those with strong temporal understanding. In this paper we address this problem head on by identifying action classes where temporal information is actually necessary to recognize them and call these "temporal classes". Selecting temporal classes using a computational method would bias the process. Instead, we propose a methodology based on a simple and effective human annotation experiment. We remove just the temporal information by shuffling frames in time and measure if the action can still be recognized. Classes that cannot be recognized when frames are not in order are included in the temporal Dataset. We observe that this set is statistically different from other static classes, and that performance in it correlates with a network's ability to capture temporal information. Thus we use it as a benchmark on current popular networks, which reveals a series of interesting facts. We also explore the effect of training on the temporal dataset, and observe that this leads to better generalization in unseen classes, demonstrating the need for more temporal data. We hope that the proposed dataset of temporal categories will help guide future research in temporal modeling for better video understanding.

Abstract (translated)

URL

https://arxiv.org/abs/1907.08340

PDF

https://arxiv.org/pdf/1907.08340.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot