Paper Reading AI Learner

Attention Control with Metric Learning Alignment for Image Set-based Recognition

2019-08-05 21:48:05
Xiaofeng Liu, Zhenhua Guo, Jane You, B.V.K Vijaya Kumar

Abstract

This paper considers the problem of image set-based face verification and identification. Unlike traditional single sample (an image or a video) setting, this situation assumes the availability of a set of heterogeneous collection of orderless images and videos. The samples can be taken at different check points, different identity documents $etc$. The importance of each image is usually considered either equal or based on a quality assessment of that image independent of other images and/or videos in that image set. How to model the relationship of orderless images within a set remains a challenge. We address this problem by formulating it as a Markov Decision Process (MDP) in a latent space. Specifically, we first propose a dependency-aware attention control (DAC) network, which uses actor-critic reinforcement learning for attention decision of each image to exploit the correlations among the unordered images. An off-policy experience replay is introduced to speed up the learning process. Moreover, the DAC is combined with a temporal model for videos using divide and conquer strategies. We also introduce a pose-guided representation (PGR) scheme that can further boost the performance at extreme poses. We propose a parameter-free PGR without the need for training as well as a novel metric learning-based PGR for pose alignment without the need for pose detection in testing stage. Extensive evaluations on IJB-A/B/C, YTF, Celebrity-1000 datasets demonstrate that our method outperforms many state-of-art approaches on the set-based as well as video-based face recognition databases.

Abstract (translated)

URL

https://arxiv.org/abs/1908.01872

PDF

https://arxiv.org/pdf/1908.01872.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot