Paper Reading AI Learner

From Haystack to Needle: Label Space Reduction for Zero-shot Classification

2025-02-12 14:20:36
Nathan Vandemoortele, Bram Steenwinckel, Femke Ongenae, Sofie Van Hoecke

Abstract

We present Label Space Reduction (LSR), a novel method for improving zero-shot classification performance of Large Language Models (LLMs). LSR iteratively refines the classification label space by systematically ranking and reducing candidate classes, enabling the model to concentrate on the most relevant options. By leveraging unlabeled data with the statistical learning capabilities of data-driven models, LSR dynamically optimizes the label space representation at test time. Our experiments across seven benchmarks demonstrate that LSR improves macro-F1 scores by an average of 7.0% (up to 14.2%) with Llama-3.1-70B and 3.3% (up to 11.1%) with Claude-3.5-Sonnet compared to standard zero-shot classification baselines. To reduce the computational overhead of LSR, which requires an additional LLM call at each iteration, we propose distilling the model into a probabilistic classifier, allowing for efficient inference.

Abstract (translated)

我们提出了一种新颖的方法——标签空间缩减(LSR),用于提升大型语言模型(LLMs)的零样本分类性能。LSR通过系统地对候选类别进行排序和减少,迭代优化分类标签空间,使模型能够专注于最相关的选项。利用未标记数据与基于数据驱动模型的统计学习能力,LSR能够在测试时动态优化标签空间表示。 我们在七个基准测试中进行了实验,结果表明,相较于标准零样本分类基线方法,在使用Llama-3.1-70B时,LSR使宏平均F1分数提高了平均7.0%(最高提升达14.2%),在使用Claude-3.5-Sonnet时则提升了平均3.3%(最多可达11.1%)。 为了降低LSR的计算开销——每次迭代需要额外调用一次LLM,我们建议将模型蒸馏成一个概率分类器,从而实现高效的推理。

URL

https://arxiv.org/abs/2502.08436

PDF

https://arxiv.org/pdf/2502.08436.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot