Paper Reading AI Learner

Transparentize the Internal and External Knowledge Utilization in LLMs with Trustworthy Citation

2025-04-21 04:50:16
Jiajun Shen, Tong Zhou, Yubo Chen, Delai Qiu, Shengping Liu, Kang Liu, Jun Zhao

Abstract

While hallucinations of large language models could been alleviated through retrieval-augmented generation and citation generation, how the model utilizes internal knowledge is still opaque, and the trustworthiness of its generated answers remains questionable. In this work, we introduce Context-Prior Augmented Citation Generation task, requiring models to generate citations considering both external and internal knowledge while providing trustworthy references, with 5 evaluation metrics focusing on 3 aspects: answer helpfulness, citation faithfulness, and trustworthiness. We introduce RAEL, the paradigm for our task, and also design INTRALIGN, an integrated method containing customary data generation and an alignment algorithm. Our experimental results show that our method achieves a better cross-scenario performance with regard to other baselines. Our extended experiments further reveal that retrieval quality, question types, and model knowledge have considerable influence on the trustworthiness in citation generation.

Abstract (translated)

虽然通过检索增强生成和引文生成可以缓解大型语言模型的幻觉问题,但模型如何利用内部知识仍然不透明,其生成答案的可信度也仍存疑。在这项工作中,我们引入了“上下文先验增强引用生成”任务,要求模型在提供可靠参考时同时考虑内外部知识,并针对三个方面:答案有用性、引文忠实性和可信度设计了5个评估指标。我们提出了RAEL这一新范式来执行我们的任务,并设计了一种综合方法INTRALIGN,该方法包含常规数据生成和对齐算法。实验结果表明,相较于其他基准模型,我们的方法在跨场景性能方面表现更佳。进一步的扩展实验还揭示出检索质量、问题类型以及模型知识对于引文生成中的可信度具有显著影响。

URL

https://arxiv.org/abs/2504.14856

PDF

https://arxiv.org/pdf/2504.14856.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot