Paper Reading AI Learner

Progress Notes Classification and Keyword Extraction using Attention-based Deep Learning Models with BERT

2019-10-13 16:54:21
Matthew Tang, Priyanka Gandhi, Md Ahsanul Kabir, Christopher Zou, Jordyn Blakey, Xiao Luo

Abstract

Despite recent advances in the application of deep learning algorithms to various kinds of medical data, clinical text classification, and extracting information from narrative clinical notes remains a challenging task. The challenges of representing, training and interpreting document classification models are amplified when dealing with small and clinical domain data sets. The objective of this research is to investigate the attention-based deep learning models to classify the de-identified clinical progress notes extracted from a real-world EHR system. The attention-based deep learning models can be used to interpret the models and understand the critical words that drive the correct or incorrect classification of the clinical progress notes. The attention-based models in this research are capable of presenting the human interpretable text classification models. The results show that the fine-tuned BERT with the attention layer can achieve a high classification accuracy of 97.6%, which is higher than the baseline fine-tuned BERT classification model. Furthermore, we demonstrate that the attention-based models can identify relevant keywords that strongly relate to the corresponding clinical categories.

Abstract (translated)

URL

https://arxiv.org/abs/1910.05786

PDF

https://arxiv.org/pdf/1910.05786.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot