Paper Reading AI Learner

Animating Landscape: Self-Supervised Learning of Decoupled Motion and Appearance for Single-Image Video Synthesis

2019-10-16 07:20:58
Yuki Endo, Yoshihiro Kanamori, Shigeru Kuriyama

Abstract

Automatic generation of a high-quality video from a single image remains a challenging task despite the recent advances in deep generative models. This paper proposes a method that can create a high-resolution, long-term animation using convolutional neural networks (CNNs) from a single landscape image where we mainly focus on skies and waters. Our key observation is that the motion (e.g., moving clouds) and appearance (e.g., time-varying colors in the sky) in natural scenes have different time scales. We thus learn them separately and predict them with decoupled control while handling future uncertainty in both predictions by introducing latent codes. Unlike previous methods that infer output frames directly, our CNNs predict spatially-smooth intermediate data, i.e., for motion, flow fields for warping, and for appearance, color transfer maps, via self-supervised learning, i.e., without explicitly-provided ground truth. These intermediate data are applied not to each previous output frame, but to the input image only once for each output frame. This design is crucial to alleviate error accumulation in long-term predictions, which is the essential problem in previous recurrent approaches. The output frames can be looped like cinemagraph, and also be controlled directly by specifying latent codes or indirectly via visual annotations. We demonstrate the effectiveness of our method through comparisons with the state-of-the-arts on video prediction as well as appearance manipulation.

Abstract (translated)

URL

https://arxiv.org/abs/1910.07192

PDF

https://arxiv.org/pdf/1910.07192.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot