Paper Reading AI Learner

Predictive Coding Networks Meet Action Recognition

2019-10-22 15:53:03
Xia Huang, Hossein Mousavi, Gemma Roig

Abstract

Action recognition is a key problem in computer vision that labels videos with a set of predefined actions. Capturing both, semantic content and motion, along the video frames is key to achieve high accuracy performance on this task. Most of the state-of-the-art methods rely on RGB frames for extracting the semantics and pre-computed optical flow fields as a motion cue. Then, both are combined using deep neural networks. Yet, it has been argued that such models are not able to leverage the motion information extracted from the optical flow, but instead the optical flow allows for better recognition of people and objects in the video. This urges the need to explore different cues or models that can extract motion in a more informative fashion. To tackle this issue, we propose to explore the predictive coding network, so called PredNet, a recurrent neural network that propagates predictive coding errors across layers and time steps. We analyze whether PredNet can better capture motions in videos by estimating over time the representations extracted from pre-trained networks for action recognition. In this way, the model only relies on the video frames, and does not need pre-processed optical flows as input. We report the effectiveness of our proposed model on UCF101 and HMDB51 datasets.

Abstract (translated)

URL

https://arxiv.org/abs/1910.10056

PDF

https://arxiv.org/pdf/1910.10056.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot