Paper Reading AI Learner

IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded Vision

2019-11-19 03:29:03
Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen, Kinya Osa, Masami Kato

Abstract

Deploying deep models on embedded devices has been a challenging problem since the great success of deep learning based networks. Fixed-point networks, which represent their data with low bits fixed-point and thus give remarkable savings on memory usage, are generally preferred. Even though current fixed-point networks employ relative low bits (e.g. 8-bits), the memory saving is far from enough for the embedded devices. On the other hand, quantization deep networks, for example XNOR-Net and HWGQNet, quantize the data into 1 or 2 bits resulting in more significant memory savings but still contain lots of floatingpoint data. In this paper, we propose a fixed-point network for embedded vision tasks through converting the floatingpoint data in a quantization network into fixed-point. Furthermore, to overcome the data loss caused by the conversion, we propose to compose floating-point data operations across multiple layers (e.g. convolution, batch normalization and quantization layers) and convert them into fixedpoint. We name the fixed-point network obtained through such integrated conversion as Integrated Fixed-point Quantization Networks (IFQ-Net). We demonstrate that our IFQNet gives 2.16x and 18x more savings on model size and runtime feature map memory respectively with similar accuracy on ImageNet. Furthermore, based on YOLOv2, we design IFQ-Tinier-YOLO face detector which is a fixed-point network with 256x reduction in model size (246k Bytes) than Tiny-YOLO. We illustrate the promising performance of our face detector in terms of detection rate on Face Detection Data Set and Bencmark (FDDB) and qualitative results of detecting small faces of Wider Face dataset.

Abstract (translated)

URL

https://arxiv.org/abs/1911.08076

PDF

https://arxiv.org/pdf/1911.08076.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot