Paper Reading AI Learner

Instance-level Human Parsing via Part Grouping Network

2018-08-01 03:51:59
Ke Gong, Xiaodan Liang, Yicheng Li, Yimin Chen, Ming Yang, Liang Lin


Instance-level human parsing towards real-world human analysis scenarios is still under-explored due to the absence of sufficient data resources and technical difficulty in parsing multiple instances in a single pass. Several related works all follow the "parsing-by-detection" pipeline that heavily relies on separately trained detection models to localize instances and then performs human parsing for each instance sequentially. Nonetheless, two discrepant optimization targets of detection and parsing lead to suboptimal representation learning and error accumulation for final results. In this work, we make the first attempt to explore a detection-free Part Grouping Network (PGN) for efficiently parsing multiple people in an image in a single pass. Our PGN reformulates instance-level human parsing as two twinned sub-tasks that can be jointly learned and mutually refined via a unified network: 1) semantic part segmentation for assigning each pixel as a human part (e.g., face, arms); 2) instance-aware edge detection to group semantic parts into distinct person instances. Thus the shared intermediate representation would be endowed with capabilities in both characterizing fine-grained parts and inferring instance belongings of each part. Finally, a simple instance partition process is employed to get final results during inference. We conducted experiments on PASCAL-Person-Part dataset and our PGN outperforms all state-of-the-art methods. Furthermore, we show its superiority on a newly collected multi-person parsing dataset (CIHP) including 38,280 diverse images, which is the largest dataset so far and can facilitate more advanced human analysis. The CIHP benchmark and our source code are available at <a href="">this http URL</a>

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot