Paper Reading AI Learner

DeepMeshFlow: Content Adaptive Mesh Deformation for Robust Image Registration

2019-12-11 06:03:07
Nianjin Ye, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Jue Wang, Yongqing Cui

Abstract

Image alignment by mesh warps, such as meshflow, is a fundamental task which has been widely applied in various vision applications(e.g., multi-frame HDR/denoising, video stabilization). Traditional mesh warp methods detect and match image features, where the quality of alignment highly depends on the quality of image features. However, the image features are not robust in occurrence of low-texture and low-light scenes. Deep homography methods, on the other hand, are free from such problem by learning deep features for robust performance. However, a homography is limited to plane motions. In this work, we present a deep meshflow motion model, which takes two images as input and output a sparse motion field with motions located at mesh vertexes. The deep meshflow enjoys the merics of meshflow that can describe nonlinear motions while also shares advantage of deep homography that is robust against challenging textureless scenarios. In particular, a new unsupervised network structure is presented with content-adaptive capability. On one hand, the image content that cannot be aligned under mesh representation are rejected by our learned mask, similar to the RANSAC procedure. On the other hand, we learn multiple mesh resolutions, combining to a non-uniform mesh division. Moreover, a comprehensive dataset is presented, covering various scenes for training and testing. The comparison between both traditional mesh warp methods and deep based methods show the effectiveness of our deep meshflow motion model.

Abstract (translated)

URL

https://arxiv.org/abs/1912.05131

PDF

https://arxiv.org/pdf/1912.05131.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot