Paper Reading AI Learner

STEERAGE: Synthesis of Neural Networks Using Architecture Search and Grow-and-Prune Methods

2019-12-12 08:42:13
Shayan Hassantabar, Xiaoliang Dai, Niraj K. Jha

Abstract

Neural networks (NNs) have been successfully deployed in many applications. However, architectural design of these models is still a challenging problem. Moreover, neural networks are known to have a lot of redundancy. This increases the computational cost of inference and poses an obstacle to deployment on Internet-of-Thing sensors and edge devices. To address these challenges, we propose the STEERAGE synthesis methodology. It consists of two complementary approaches: efficient architecture search, and grow-and-prune NN synthesis. The first step, covered in a global search module, uses an accuracy predictor to efficiently navigate the architectural search space. The predictor is built using boosted decision tree regression, iterative sampling, and efficient evolutionary search. The second step involves local search. By using various grow-and-prune methodologies for synthesizing convolutional and feed-forward NNs, it reduces the network redundancy, while boosting its performance. We have evaluated STEERAGE performance on various datasets, including MNIST and CIFAR-10. On MNIST dataset, our CNN architecture achieves an error rate of 0.66%, with 8.6x fewer parameters compared to the LeNet-5 baseline. For the CIFAR-10 dataset, we used the ResNet architectures as the baseline. Our STEERAGE-synthesized ResNet-18 has a 2.52% accuracy improvement over the original ResNet-18, 1.74% over ResNet-101, and 0.16% over ResNet-1001, while having comparable number of parameters and FLOPs to the original ResNet-18. This shows that instead of just increasing the number of layers to increase accuracy, an alternative is to use a better NN architecture with fewer layers. In addition, STEERAGE achieves an error rate of just 3.86% with a variant of ResNet architecture with 40 layers. To the best of our knowledge, this is the highest accuracy obtained by ResNet-based architectures on the CIFAR-10 dataset.

Abstract (translated)

URL

https://arxiv.org/abs/1912.05831

PDF

https://arxiv.org/pdf/1912.05831.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot