Paper Reading AI Learner

Face Hallucination with Finishing Touches

2020-02-09 07:33:48
Yang Zhang, Ivor W.Tsang, Jun Li, Ping Liu, Xiaobo Lu, Xin Yu

Abstract

Obtaining a high-quality frontal face image from a low-resolution (LR) non-frontal face image is primarily important for many facial analysis applications. However, mainstreams either focus on super-resolving near-frontal LR faces or frontalizing non-frontal high-resolution (HR) faces. It is desirable to perform both tasks seamlessly for daily-life unconstrained face images. In this paper, we present a novel Vivid Face Hallucination Generative Adversarial Network (VividGAN) devised for simultaneously super-resolving and frontalizing tiny non-frontal face images. VividGAN consists of a Vivid Face Hallucination Network (Vivid-FHnet) and two discriminators, i.e., Coarse-D and Fine-D. The Vivid-FHnet first generates a coarse frontal HR face and then makes use of the structure prior, i.e., fine-grained facial components, to achieve a fine frontal HR face image. Specifically, we propose a facial component-aware module, which adopts the facial geometry guidance as clues to accurately align and merge the coarse frontal HR face and prior information. Meanwhile, the two-level discriminators are designed to capture both the global outline of the face as well as detailed facial characteristics. The Coarse-D enforces the coarse hallucinated faces to be upright and complete; while the Fine-D focuses on the fine hallucinated ones for sharper details. Extensive experiments demonstrate that our VividGAN achieves photo-realistic frontal HR faces, reaching superior performance in downstream tasks, i.e., face recognition and expression classification, compared with other state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2002.03308

PDF

https://arxiv.org/pdf/2002.03308.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot