Paper Reading AI Learner

Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices

2020-03-04 23:38:54
Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, Hadi Esmaeilzadeh

Abstract

Recent advances demonstrate that irregularly wired neural networks from Neural Architecture Search (NAS) and Random Wiring can not only automate the design of deep neural networks but also emit models that outperform previous manual designs. These designs are especially effective while designing neural architectures under hard resource constraints (memory, MACs, . . . ) which highlights the importance of this class of designing neural networks. However, such a move creates complication in the previously streamlined pattern of execution. In fact one of the main challenges is that the order of such nodes in the neural network significantly effects the memory footprint of the intermediate activations. Current compilers do not schedule with regard to activation memory footprint that it significantly increases its peak compared to the optimum, rendering it not applicable for edge devices. To address this standing issue, we present a memory-aware compiler, dubbed SERENITY, that utilizes dynamic programming to find a sequence that finds a schedule with optimal memory footprint. Our solution also comprises of graph rewriting technique that allows further reduction beyond the optimum. As such, SERENITY achieves optimal peak memory, and the graph rewriting technique further improves this resulting in 1.68x improvement with dynamic programming-based scheduler and 1.86x with graph rewriting, against TensorFlow Lite with less than one minute overhead.

Abstract (translated)

URL

https://arxiv.org/abs/2003.02369

PDF

https://arxiv.org/pdf/2003.02369.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot