Paper Reading AI Learner

Realizing Pixel-Level Semantic Learning in Complex Driving Scenes based on Only One Annotated Pixel per Class

2020-03-10 12:57:55
Xi Li, Huimin Ma, Sheng Yi, Yanxian Chen

Abstract

Semantic segmentation tasks based on weakly supervised condition have been put forward to achieve a lightweight labeling process. For simple images that only include a few categories, researches based on image-level annotations have achieved acceptable performance. However, when facing complex scenes, since image contains a large amount of classes, it becomes difficult to learn visual appearance based on image tags. In this case, image-level annotations are not effective in providing information. Therefore, we set up a new task in which only one annotated pixel is provided for each category. Based on the more lightweight and informative condition, a three step process is built for pseudo labels generation, which progressively implement optimal feature representation for each category, image inference and context-location based refinement. In particular, since high-level semantics and low-level imaging feature have different discriminative ability for each class under driving scenes, we divide each category into "object" or "scene" and then provide different operations for the two types separately. Further, an alternate iterative structure is established to gradually improve segmentation performance, which combines CNN-based inter-image common semantic learning and imaging prior based intra-image modification process. Experiments on Cityscapes dataset demonstrate that the proposed method provides a feasible way to solve weakly supervised semantic segmentation task under complex driving scenes.

Abstract (translated)

URL

https://arxiv.org/abs/2003.04671

PDF

https://arxiv.org/pdf/2003.04671.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot