Paper Reading AI Learner

Energy-based Periodicity Mining with Deep Features for Action Repetition Counting in Unconstrained Videos

2020-03-15 14:21:18
Jianqin Yin, Yanchun Wu, Huaping Liu, Yonghao Dang, Zhiyi Liu, Jun Liu

Abstract

Action repetition counting is to estimate the occurrence times of the repetitive motion in one action, which is a relatively new, important but challenging measurement problem. To solve this problem, we propose a new method superior to the traditional ways in two aspects, without preprocessing and applicable for arbitrary periodicity actions. Without preprocessing, the proposed model makes our method convenient for real applications; processing the arbitrary periodicity action makes our model more suitable for the actual circumstance. In terms of methodology, firstly, we analyze the movement patterns of the repetitive actions based on the spatial and temporal features of actions extracted by deep ConvNets; Secondly, the Principal Component Analysis algorithm is used to generate the intuitive periodic information from the chaotic high-dimensional deep features; Thirdly, the periodicity is mined based on the high-energy rule using Fourier transform; Finally, the inverse Fourier transform with a multi-stage threshold filter is proposed to improve the quality of the mined periodicity, and peak detection is introduced to finish the repetition counting. Our work features two-fold: 1) An important insight that deep features extracted for action recognition can well model the self-similarity periodicity of the repetitive action is presented. 2) A high-energy based periodicity mining rule using deep features is presented, which can process arbitrary actions without preprocessing. Experimental results show that our method achieves comparable results on the public datasets YT Segments and QUVA.

Abstract (translated)

URL

https://arxiv.org/abs/2003.06838

PDF

https://arxiv.org/pdf/2003.06838.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot