Paper Reading AI Learner

Can we still avoid automatic face detection?

2020-03-27 13:17:57
Michael J. Wilber, Vitaly Shmatikov, Serge Belongie

Abstract

After decades of study, automatic face detection and recognition systems are now accurate and widespread. Naturally, this means users who wish to avoid automatic recognition are becoming less able to do so. Where do we stand in this cat-and-mouse race? We currently live in a society where everyone carries a camera in their pocket. Many people willfully upload most or all of the pictures they take to social networks which invest heavily in automatic face recognition systems. In this setting, is it still possible for privacy-conscientious users to avoid automatic face detection and recognition? If so, how? Must evasion techniques be obvious to be effective, or are there still simple measures that users can use to protect themselves? In this work, we find ways to evade face detection on Facebook, a representative example of a popular social network that uses automatic face detection to enhance their service. We challenge widely-held beliefs about evading face detection: do our old techniques such as blurring the face region or wearing "privacy glasses" still work? We show that in general, state-of-the-art detectors can often find faces even if the subject wears occluding clothing or even if the uploader damages the photo to prevent faces from being detected.

Abstract (translated)

URL

https://arxiv.org/abs/1602.04504

PDF

https://arxiv.org/pdf/1602.04504.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot