Paper Reading AI Learner

Multi-Objective Matrix Normalization for Fine-grained Visual Recognition

2020-03-30 08:40:35
Shaobo Min, Hantao Yao, Hongtao Xie, Zheng-Jun Zha, Yongdong Zhang

Abstract

Bilinear pooling achieves great success in fine-grained visual recognition (FGVC). Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features, but some problems, e.g., redundant information and over-fitting, remain to be resolved. In this paper, we propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation in terms of square-root, low-rank, and sparsity. These three regularizers can not only stabilize the second-order information, but also compact the bilinear features and promote model generalization. In MOMN, a core challenge is how to jointly optimize three non-smooth regularizers of different convex properties. To this end, MOMN first formulates them into an augmented Lagrange formula with approximated regularizer constraints. Then, auxiliary variables are introduced to relax different constraints, which allow each regularizer to be solved alternately. Finally, several updating strategies based on gradient descent are designed to obtain consistent convergence and efficient implementation. Consequently, MOMN is implemented with only matrix multiplication, which is well-compatible with GPU acceleration, and the normalized bilinear features are stabilized and discriminative. Experiments on five public benchmarks for FGVC demonstrate that the proposed MOMN is superior to existing normalization-based methods in terms of both accuracy and efficiency. The code is available: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2003.13272

PDF

https://arxiv.org/pdf/2003.13272.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot