Paper Reading AI Learner

Hierarchical Opacity Propagation for Image Matting

2020-04-07 10:39:55
Yaoyi Li, Qingyao Xu, Hongtao Lu


Natural image matting is a fundamental problem in computational photography and computer vision. Deep neural networks have seen the surge of successful methods in natural image matting in recent years. In contrast to traditional propagation-based matting methods, some top-tier deep image matting approaches tend to perform propagation in the neural network implicitly. A novel structure for more direct alpha matte propagation between pixels is in demand. To this end, this paper presents a hierarchical opacity propagation (HOP) matting method, where the opacity information is propagated in the neighborhood of each point at different semantic levels. The hierarchical structure is based on one global and multiple local propagation blocks. With the HOP structure, every feature point pair in high-resolution feature maps will be connected based on the appearance of input image. We further propose a scale-insensitive positional encoding tailored for image matting to deal with the unfixed size of input image and introduce the random interpolation augmentation into image matting. Extensive experiments and ablation study show that HOP matting is capable of outperforming state-of-the-art matting methods.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot