Paper Reading AI Learner

FLIVVER: Fly Lobula Inspired Visual Velocity Estimation & Ranging

2020-04-10 22:35:13
Bryson Lingenfelter, Arunava Nag, Floris van Breugel

Abstract

The mechanism by which a tiny insect or insect-sized robot could estimate its absolute velocity and distance to nearby objects remains unknown. However, this ability is critical for behaviors that require estimating wind direction during flight, such as odor-plume tracking. Neuroscience and behavior studies with insects have shown that they rely on the perception of image motion, or optic flow, to estimate relative motion, equivalent to a ratio of their velocity and distance to objects in the world. The key open challenge is therefore to decouple these two states from a single measurement of their ratio. Although modern SLAM (Simultaneous Localization and Mapping) methods provide a solution to this problem for robotic systems, these methods typically rely on computations that insects likely cannot perform, such as simultaneously tracking multiple individual visual features, remembering a 3D map of the world, and solving nonlinear optimization problems using iterative algorithms. Here we present a novel algorithm, FLIVVER, which combines the geometry of dynamic forward motion with inspiration from insect visual processing to \textit{directly} estimate absolute ground velocity from a combination of optic flow and acceleration information. Our algorithm provides a clear hypothesis for how insects might estimate absolute velocity, and also provides a theoretical framework for designing fast analog circuitry for efficient state estimation, which could be applied to insect-sized robots.

Abstract (translated)

URL

https://arxiv.org/abs/2004.05247

PDF

https://arxiv.org/pdf/2004.05247.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot