Paper Reading AI Learner

Semantic Triple Encoder for Fast Open-Set Link Prediction

2020-04-30 13:50:34
Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Yi Chang

Abstract

We improve both the open-set generalization and efficiency of link prediction on knowledge graphs by leveraging the contexts of entities and relations in a novel semantic triple encoder. Most previous methods, e.g., translation-based and GCN-based embedding approaches, were built upon graph embedding models. They simply treat the entities/relations as a closed set of graph nodes regardless of their context semantics, which however cannot provide critical information for the generalization to unseen entities/relations. In this paper, we partition each graph triple and develop a novel context-based encoder that separately maps each part and its context into a latent semantic space. We train this semantic triple encoder by optimizing two objectives specifically designed for link prediction. In particular, (1) We split each triple into two parts, i.e., i) head entity plus relation and ii) tail entity, process both contexts separately by a Transformer encoder, and combine the encoding outputs to derive the prediction. This Siamese-like architecture avoids the combinatorial explosion of candidate triples and significantly improves the efficiency, especially during inference; (2) We cover the contextualized semantics of the triples in the encoder so it can handle unseen entities during inference, which promisingly improves the generalization ability; (3) We train the model by optimizing two complementary objectives defined on the triple, i.e., classification and contrastive losses, for natural and reliable ranking scores during inference. In experiments, we achieve the state-of-the-art or competitive performance on three popular link prediction benchmarks. In addition, we empirically reduce the inference costs by one or two orders of magnitude compared to a recent context-based encoding approach and meanwhile keep a superior quality of prediction.

Abstract (translated)

URL

https://arxiv.org/abs/2004.14781

PDF

https://arxiv.org/pdf/2004.14781.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot