Paper Reading AI Learner

Arbitrary-sized Image Training and Residual Kernel Learning: Towards Image Fraud Identification

2020-05-22 07:57:24
Hongyu Li, Xiaogang Huang, Zhihui Fu, Xiaolin Li

Abstract

Preserving original noise residuals in images are critical to image fraud identification. Since the resizing operation during deep learning will damage the microstructures of image noise residuals, we propose a framework for directly training images of original input scales without resizing. Our arbitrary-sized image training method mainly depends on the pseudo-batch gradient descent (PBGD), which bridges the gap between the input batch and the update batch to assure that model updates can normally run for arbitrary-sized images. In addition, a 3-phase alternate training strategy is designed to learn optimal residual kernels for image fraud identification. With the learnt residual kernels and PBGD, the proposed framework achieved the state-of-the-art results in image fraud identification, especially for images with small tampered regions or unseen images with different tampering distributions.

Abstract (translated)

URL

https://arxiv.org/abs/2005.11043

PDF

https://arxiv.org/pdf/2005.11043.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot