Paper Reading AI Learner

Mitigating Gender Bias in Captioning Systems

2020-06-15 12:16:19
Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu, Xia Hu

Abstract

Recent studies have shown that captioning datasets, such as the COCO dataset, may contain severe social bias which could potentially lead to unintentional discrimination in learning models. In this work, we specifically focus on the gender bias problem. The existing dataset fails to quantify bias because models that intrinsically memorize gender bias from training data could still achieve a competitive performance on the biased test dataset. To bridge the gap, we create two new splits: COCO-GB v1 and v2 to quantify the inherent gender bias which could be learned by models. Several widely used baselines are evaluated on our new settings, and experimental results indicate that most models learn gender bias from the training data, leading to an undesirable gender prediction error towards women. To overcome the unwanted bias, we propose a novel Guided Attention Image Captioning model (GAIC) which provides self-guidance on visual attention to encourage the model to explore correct gender visual evidence. Experimental results validate that GAIC can significantly reduce gender prediction error, with a competitive caption quality. Our codes and the designed benchmark datasets are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2006.08315

PDF

https://arxiv.org/pdf/2006.08315.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot