Paper Reading AI Learner

Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization

2020-06-16 01:21:22
Chong You, Zhihui Zhu, Qing Qu, Yi Ma

Abstract

Recent advances have shown that implicit bias of gradient descent on over-parameterized models enables the recovery of low-rank matrices from linear measurements, even with no prior knowledge on the intrinsic rank. In contrast, for robust low-rank matrix recovery from grossly corrupted measurements, over-parameterization leads to overfitting without prior knowledge on both the intrinsic rank and sparsity of corruption. This paper shows that with a double over-parameterization for both the low-rank matrix and sparse corruption, gradient descent with discrepant learning rates provably recovers the underlying matrix even without prior knowledge on neither rank of the matrix nor sparsity of the corruption. We further extend our approach for the robust recovery of natural images by over-parameterizing images with deep convolutional networks. Experiments show that our method handles different test images and varying corruption levels with a single learning pipeline where the network width and termination conditions do not need to be adjusted on a case-by-case basis. Underlying the success is again the implicit bias with discrepant learning rates on different over-parameterized parameters, which may bear on broader applications.

Abstract (translated)

URL

https://arxiv.org/abs/2006.08857

PDF

https://arxiv.org/pdf/2006.08857.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot