Paper Reading AI Learner

An Implicit Attention Mechanism for Deep Learning Pedestrian Re-identification Frameworks

2020-06-25 18:38:32
Ehsan Yaghoubi, Diana Borza, Aruna Kumar, Hugo Proença

Abstract

Attention is defined as the preparedness for the mental selection of certain aspects in a physical environment. In the computer vision domain, this mechanism is of most interest, as it helps to define the segments of an image/video that are critical for obtaining a specific decision. This paper introduces one 'implicit' attentional mechanism for deep learning frameworks, that provides simultaneously: 1) masks-free; and 2) foreground-focused samples for the inference phase. The main idea is to generate synthetic data composed of interleaved segments from the original learning set, while using class information only from specific segments. During the learning phase, the newly generated samples feed the network, keeping their label exclusively consistent with the identity from where the region-of-interest was cropped. Hence, as the model receives images of each identity with inconsistent unwanted areas, it naturally pays the most attention to the label consistent consistent regions, which we observed to be equivalent to learn an effective receptive field. During the test phase, samples are provided without any mask, and the network naturally disregards the detrimental information, which is the insight for the observed improvements in performance. As a proof-of-concept, we consider the challenging problem of pedestrian re-identification and compare the effectiveness of our solution to the state-of-the-art techniques in the well known Richly Annotated Pedestrian (RAP) dataset. The code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2001.11267

PDF

https://arxiv.org/pdf/2001.11267.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot