Paper Reading AI Learner

Maximum Entropy Models for Fast Adaptation

2020-06-30 04:39:36
Samarth Sinha, Anirudh Goyal, Animesh Garg

Abstract

Deep Neural Networks have shown great promise on a variety of downstream tasks; but their ability to adapt to new data and tasks remains a challenging problem. The ability of a model to perform few-shot adaptation to a novel task is important for the scalability and deployment of machine learning models. Recent work has shown that the learned features in a neural network follow a normal distribution [41], which thereby results in a strong prior on the downstream task. This implicit overfitting to data from training tasks limits the ability to generalize and adapt to unseen tasks at test time. This also highlights the importance of learning task-agnostic representations from data. In this paper, we propose a regularization scheme using a max-entropy prior on the learned features of a neural network; such that the extracted features make minimal assumptions about the training data. We evaluate our method on adaptation to unseen tasks by performing experiments in 4 distinct settings. We find that our method compares favourably against multiple strong baselines across all of these experiments.

Abstract (translated)

URL

https://arxiv.org/abs/2006.16524

PDF

https://arxiv.org/pdf/2006.16524.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot