Paper Reading AI Learner

Single-Shot Two-Pronged Detector with Rectified IoU Loss

2020-08-08 12:36:55
Keyang Wang, Lei Zhang

Abstract

In the CNN based object detectors, feature pyramids are widely exploited to alleviate the problem of scale variation across object instances. These object detectors, which strengthen features via a top-down pathway and lateral connections, are mainly to enrich the semantic information of low-level features, but ignore the enhancement of high-level features. This can lead to an imbalance between different levels of features, in particular a serious lack of detailed information in the high-level features, which makes it difficult to get accurate bounding boxes. In this paper, we introduce a novel two-pronged transductive idea to explore the relationship among different layers in both backward and forward directions, which can enrich the semantic information of low-level features and detailed information of high-level features at the same time. Under the guidance of the two-pronged idea, we propose a Two-Pronged Network (TPNet) to achieve bidirectional transfer between high-level features and low-level features, which is useful for accurately detecting object at different scales. Furthermore, due to the distribution imbalance between the hard and easy samples in single-stage detectors, the gradient of localization loss is always dominated by the hard examples that have poor localization accuracy. This will enable the model to be biased toward the hard samples. So in our TPNet, an adaptive IoU based localization loss, named Rectified IoU (RIoU) loss, is proposed to rectify the gradients of each kind of samples. The Rectified IoU loss increases the gradients of examples with high IoU while suppressing the gradients of examples with low IoU, which can improve the overall localization accuracy of model. Extensive experiments demonstrate the superiority of our TPNet and RIoU loss.

Abstract (translated)

URL

https://arxiv.org/abs/2008.03511

PDF

https://arxiv.org/pdf/2008.03511.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot