Paper Reading AI Learner

Progressive Training of Multi-level Wavelet Residual Networks for Image Denoising

2020-10-23 14:14:00
Yali Peng, Yue Cao, Shigang Liu, Jian Yang, Wangmeng Zuo

Abstract

Recent years have witnessed the great success of deep convolutional neural networks (CNNs) in image denoising. Albeit deeper network and larger model capacity generally benefit performance, it remains a challenging practical issue to train a very deep image denoising network. Using multilevel wavelet-CNN (MWCNN) as an example, we empirically find that the denoising performance cannot be significantly improved by either increasing wavelet decomposition levels or increasing convolution layers within each level. To cope with this issue, this paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training (PTMWRN) scheme to improve image denoising performance. In contrast to MWCNN, our MWRN introduces several residual blocks after each level of discrete wavelet transform (DWT) and before inverse discrete wavelet transform (IDWT). For easing the training difficulty, scale-specific loss is applied to each level of MWRN by requiring the intermediate output to approximate the corresponding wavelet subbands of ground-truth clean image. To ensure the effectiveness of scale-specific loss, we also take the wavelet subbands of noisy image as the input to each scale of the encoder. Furthermore, progressive training scheme is adopted for better learning of MWRN by beigining with training the lowest level of MWRN and progressively training the upper levels to bring more fine details to denoising results. Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods in terms both quantitative metrics and visual quality.

Abstract (translated)

URL

https://arxiv.org/abs/2010.12422

PDF

https://arxiv.org/pdf/2010.12422.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot