Paper Reading AI Learner

Bridging the Performance Gap Between Pose Estimation Networks Trained on Real And Synthetic Data Using Domain Randomization

2020-11-17 09:12:11
Frederik Hagelskjaer, Anders Glent Buch

Abstract

Since the introduction of deep learning methods, pose estimation performance has increased drastically. Usually, large amounts of manually annotated training data are required for these networks to perform. While training on synthetic data can avoid the manual annotation, this introduces another obstacle. There is currently a large performance gap between methods trained on real and synthetic data. This paper introduces a new method, which bridges the gap between real and synthetically trained networks. As opposed to other methods, the network utilizes 3D point clouds. This allows both for domain randomization in 3D and to use neighboring geometric information during inference. Experiments on three large pose estimation benchmarks show that the presented method outperforms previous methods trained on synthetic data and achieves comparable-and sometimes superior-results to existing methods trained on real data.

Abstract (translated)

URL

https://arxiv.org/abs/2011.08517

PDF

https://arxiv.org/pdf/2011.08517.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot