Paper Reading AI Learner

Seed Phenotyping on Neural Networks using Domain Randomization and Transfer Learning

2020-12-24 14:04:28
Venkat Margapuri, Mitchell Neilsen

Abstract

Seed phenotyping is the idea of analyzing the morphometric characteristics of a seed to predict the behavior of the seed in terms of development, tolerance and yield in various environmental conditions. The focus of the work is the application and feasibility analysis of the state-of-the-art object detection and localization neural networks, Mask R-CNN and YOLO (You Only Look Once), for seed phenotyping using Tensorflow. One of the major bottlenecks of such an endeavor is the need for large amounts of training data. While the capture of a multitude of seed images is taunting, the images are also required to be annotated to indicate the boundaries of the seeds on the image and converted to data formats that the neural networks are able to consume. Although tools to manually perform the task of annotation are available for free, the amount of time required is enormous. In order to tackle such a scenario, the idea of domain randomization i.e. the technique of applying models trained on images containing simulated objects to real-world objects, is considered. In addition, transfer learning i.e. the idea of applying the knowledge obtained while solving a problem to a different problem, is used. The networks are trained on pre-trained weights from the popular ImageNet and COCO data sets. As part of the work, experiments with different parameters are conducted on five different seed types namely, canola, rough rice, sorghum, soy, and wheat.

Abstract (translated)

URL

https://arxiv.org/abs/2012.13259

PDF

https://arxiv.org/pdf/2012.13259.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot