Paper Reading AI Learner

An Artificial Intelligence System for Combined Fruit Detection and Georeferencing, Using RTK-Based Perspective Projection in Drone Imagery

2021-01-01 23:39:55
Angus Baird, Stefano Giani

Abstract

This work presents an Artificial Intelligence (AI) system, based on the Faster Region-Based Convolution Neural Network (Faster R-CNN) framework, which detects and counts apples from oblique, aerial drone imagery of giant commercial orchards. To reduce computational cost, a novel precursory stage to the network is designed to preprocess raw imagery into cropped images of individual trees. Unique geospatial identifiers are allocated to these using the perspective projection model. This employs Real-Time Kinematic (RTK) data, Digital Terrain and Surface Models (DTM and DSM), as well as internal and external camera parameters. The bulk of experiments however focus on tuning hyperparameters in the detection network itself. Apples which are on trees and apples which are on the ground are treated as separate classes. A mean Average Precision (mAP) metric, calibrated by the size of the two classes, is devised to mitigate spurious results. Anchor box design is of key interest due to the scale of the apples. As such, a k-means clustering approach, never before seen in literature for Faster R-CNN, resulted in the most significant improvements to calibrated mAP. Other experiments showed that the maximum number of box proposals should be 225; the initial learning rate of 0.001 is best applied to the adaptive RMS Prop optimiser; and ResNet 101 is the ideal base feature extractor when considering mAP and, to a lesser extent, inference time. The amalgamation of the optimal hyperparameters leads to a model with a calibrated mAP of 0.7627.

Abstract (translated)

URL

https://arxiv.org/abs/2101.00339

PDF

https://arxiv.org/pdf/2101.00339.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot