Paper Reading AI Learner

Learning for Visual Navigation by Imagining the Success

2021-02-28 10:25:46
Mahdi Kazemi Moghaddam, Ehsan Abbasnejad, Qi Wu, Javen Shi, Anton Van Den Hengel

Abstract

Visual navigation is often cast as a reinforcement learning (RL) problem. Current methods typically result in a suboptimal policy that learns general obstacle avoidance and search behaviours. For example, in the target-object navigation setting, the policies learnt by traditional methods often fail to complete the task, even when the target is clearly within reach from a human perspective. In order to address this issue, we propose to learn to imagine a latent representation of the successful (sub-)goal state. To do so, we have developed a module which we call Foresight Imagination (ForeSIT). ForeSIT is trained to imagine the recurrent latent representation of a future state that leads to success, e.g. either a sub-goal state that is important to reach before the target, or the goal state itself. By conditioning the policy on the generated imagination during training, our agent learns how to use this imagination to achieve its goal robustly. Our agent is able to imagine what the (sub-)goal state may look like (in the latent space) and can learn to navigate towards that state. We develop an efficient learning algorithm to train ForeSIT in an on-policy manner and integrate it into our RL objective. The integration is not trivial due to the constantly evolving state representation shared between both the imagination and the policy. We, empirically, observe that our method outperforms the state-of-the-art methods by a large margin in the commonly accepted benchmark AI2THOR environment. Our method can be readily integrated or added to other model-free RL navigation frameworks.

Abstract (translated)

URL

https://arxiv.org/abs/2103.00446

PDF

https://arxiv.org/pdf/2103.00446.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot