Paper Reading AI Learner

Diversifying Sample Generation for Accurate Data-Free Quantization

2021-03-01 14:46:02
Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li, Fengwei Yu, Xianglong Liu

Abstract

Quantization has emerged as one of the most prevalent approaches to compress and accelerate neural networks. Recently, data-free quantization has been widely studied as a practical and promising solution. It synthesizes data for calibrating the quantized model according to the batch normalization (BN) statistics of FP32 ones and significantly relieves the heavy dependency on real training data in traditional quantization methods. Unfortunately, we find that in practice, the synthetic data identically constrained by BN statistics suffers serious homogenization at both distribution level and sample level and further causes a significant performance drop of the quantized model. We propose Diverse Sample Generation (DSG) scheme to mitigate the adverse effects caused by homogenization. Specifically, we slack the alignment of feature statistics in the BN layer to relax the constraint at the distribution level and design a layerwise enhancement to reinforce specific layers for different data samples. Our DSG scheme is versatile and even able to be applied to the state-of-the-art post-training quantization method like AdaRound. We evaluate the DSG scheme on the large-scale image classification task and consistently obtain significant improvements over various network architectures and quantization methods, especially when quantized to lower bits (e.g., up to 22% improvement on W4A4). Moreover, benefiting from the enhanced diversity, models calibrated by synthetic data perform close to those calibrated by real data and even outperform them on W4A4.

Abstract (translated)

URL

https://arxiv.org/abs/2103.01049

PDF

https://arxiv.org/pdf/2103.01049.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot