Paper Reading AI Learner

Look, Evolve and Mold: Learning 3D Shape Manifold via Single-view Synthetic Data

2021-03-08 14:30:18
Qianyu Feng, Yawei Luo, Keyang Luo, Yi Yang

Abstract

With daily observation and prior knowledge, it is easy for us human to infer the stereo structure via a single view. However, to equip the deep models with such ability usually requires abundant supervision. It is promising that without the elaborated 3D annotation, we can simply profit from the synthetic data, where pairwise ground-truth is easy to access. Nevertheless, the domain gap is not neglectable considering the variant texture, shape and context. To overcome these difficulties, we propose a domain-adaptive network for single-view 3D reconstruction, dubbed LEM, to generalize towards the natural scenario by fulfilling several aspects: (1) Look: incorporating spatial structure from the single view to enhance the representation; (2) Evolve: leveraging the semantic information with unsupervised contrastive mapping recurring to the shape priors; (3) Mold: transforming into the desired stereo manifold with discernment and semantic knowledge. Extensive experiments on several benchmarks demonstrate the effectiveness and robustness of the proposed method, LEM, in learning the 3D shape manifold from the synthetic data via a single-view.

Abstract (translated)

URL

https://arxiv.org/abs/2103.04789

PDF

https://arxiv.org/pdf/2103.04789.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot