Paper Reading AI Learner

Principal component-based image segmentation: a new approach to outline in vitro cell colonies

2021-03-10 12:37:51
Delmon Arous, Stefan Schrunner, Ingunn Hanson, Nina F.J. Edin, Eirik Malinen

Abstract

The in vitro clonogenic assay is a technique to study the ability of a cell to form a colony in a culture dish. By optical imaging, dishes with stained colonies can be scanned and assessed digitally. Identification, segmentation and counting of stained colonies play a vital part in high-throughput screening and quantitative assessment of biological assays. Image processing of such pictured/scanned assays can be affected by image/scan acquisition artifacts like background noise and spatially varying illumination, and contaminants in the suspension medium. Although existing approaches tackle these issues, the segmentation quality requires further improvement, particularly on noisy and low contrast images. In this work, we present an objective and versatile machine learning procedure to amend these issues by characterizing, extracting and segmenting inquired colonies using principal component analysis, k-means clustering and a modified watershed segmentation algorithm. The intention is to automatically identify visible colonies through spatial texture assessment and accordingly discriminate them from background in preparation for successive segmentation. The proposed segmentation algorithm yielded a similar quality as manual counting by human observers. High F1 scores (>0.9) and low root-mean-square errors (around 14%) underlined good agreement with ground truth data. Moreover, it outperformed a recent state-of-the-art method. The methodology will be an important tool in future cancer research applications.

Abstract (translated)

URL

https://arxiv.org/abs/2103.06022

PDF

https://arxiv.org/pdf/2103.06022.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot