Paper Reading AI Learner

Glioma Prognosis: Segmentation of the Tumor and Survival Prediction using Shape, Geometric and Clinical Information

2021-04-02 10:49:05
Mobarakol Islam, V Jeya Maria Jose, Hongliang Ren

Abstract

Segmentation of brain tumor from magnetic resonance imaging (MRI) is a vital process to improve diagnosis, treatment planning and to study the difference between subjects with tumor and healthy subjects. In this paper, we exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue. Hypercolumn is the concatenation of a set of vectors which form by extracting convolutional features from multiple layers. Proposed model integrates batch normalization (BN) approach with hypercolumn. BN layers help to alleviate the internal covariate shift during stochastic gradient descent (SGD) training by zero-mean and unit variance of each mini-batch. Survival Prediction is done by first extracting features(Geometric, Fractal, and Histogram) from the segmented brain tumor data. Then, the number of days of overall survival is predicted by implementing regression on the extracted features using an artificial neural network (ANN). Our model achieves a mean dice score of 89.78%, 82.53% and 76.54% for the whole tumor, tumor core and enhancing tumor respectively in segmentation task and 67.90% in overall survival prediction task with the validation set of BraTS 2018 challenge. It obtains a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor core and enhancing tumor respectively in the segmentation task and a 46.80% in overall survival prediction task in the BraTS 2018 test data set.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00980

PDF

https://arxiv.org/pdf/2104.00980.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot