Paper Reading AI Learner

Identifying Water Stress in Chickpea Plant by Analyzing Progressive Changes in Shoot Images using Deep Learning

2021-04-16 06:23:19
Shiva Azimi, Rohan Wadhawan, Tapan K. Gandhi

Abstract

To meet the needs of a growing world population, we need to increase the global agricultural yields by employing modern, precision, and automated farming methods. In the recent decade, high-throughput plant phenotyping techniques, which combine non-invasive image analysis and machine learning, have been successfully applied to identify and quantify plant health and diseases. However, these image-based machine learning usually do not consider plant stress's progressive or temporal nature. This time-invariant approach also requires images showing severe signs of stress to ensure high confidence detections, thereby reducing this approach's feasibility for early detection and recovery of plants under stress. In order to overcome the problem mentioned above, we propose a temporal analysis of the visual changes induced in the plant due to stress and apply it for the specific case of water stress identification in Chickpea plant shoot images. For this, we have considered an image dataset of two chickpea varieties JG-62 and Pusa-372, under three water stress conditions; control, young seedling, and before flowering, captured over five months. We then develop an LSTM-CNN architecture to learn visual-temporal patterns from this dataset and predict the water stress category with high confidence. To establish a baseline context, we also conduct a comparative analysis of the CNN architecture used in the proposed model with the other CNN techniques used for the time-invariant classification of water stress. The results reveal that our proposed LSTM-CNN model has resulted in the ceiling level classification performance of \textbf{98.52\%} on JG-62 and \textbf{97.78\%} on Pusa-372 and the chickpea plant data. Lastly, we perform an ablation study to determine the LSTM-CNN model's performance on decreasing the amount of temporal session data used for training.

Abstract (translated)

URL

https://arxiv.org/abs/2104.07911

PDF

https://arxiv.org/pdf/2104.07911.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot