Paper Reading AI Learner

A Surface Geometry Model for LiDAR Depth Completion

2021-04-17 06:48:01
Yiming Zhao, Lin Bai, Ziming Zhang, Xinming Huang

Abstract

LiDAR depth completion is a task that predicts depth values for every pixel on the corresponding camera frame, although only sparse LiDAR points are available. Most of the existing state-of-the-art solutions are based on deep neural networks, which need a large amount of data and heavy computations for training the models. In this letter, a novel non-learning depth completion method is proposed by exploiting the local surface geometry that is enhanced by an outlier removal algorithm. The proposed surface geometry model is inspired by the observation that most pixels with unknown depth have a nearby LiDAR point. Therefore, it is assumed those pixels share the same surface with the nearest LiDAR point, and their respective depth can be estimated as the nearest LiDAR depth value plus a residual error. The residual error is calculated by using a derived equation with several physical parameters as input, including the known camera intrinsic parameters, estimated normal vector, and offset distance on the image plane. The proposed method is further enhanced by an outlier removal algorithm that is designed to remove incorrectly mapped LiDAR points from occluded regions. On KITTI dataset, the proposed solution achieves the best error performance among all existing non-learning methods and is comparable to the best self-supervised learning method and some supervised learning methods. Moreover, since outlier points from occluded regions is a commonly existing problem, the proposed outlier removal algorithm is a general preprocessing step that is applicable to many robotic systems with both camera and LiDAR sensors.

Abstract (translated)

URL

https://arxiv.org/abs/2104.08466

PDF

https://arxiv.org/pdf/2104.08466.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot