Paper Reading AI Learner

Towards Solving Multimodal Comprehension

2021-04-20 17:30:27
Pritish Sahu, Karan Sikka, Ajay Divakaran

Abstract

This paper targets the problem of procedural multimodal machine comprehension (M3C). This task requires an AI to comprehend given steps of multimodal instructions and then answer questions. Compared to vanilla machine comprehension tasks where an AI is required only to understand a textual input, procedural M3C is more challenging as the AI needs to comprehend both the temporal and causal factors along with multimodal inputs. Recently Yagcioglu et al. [35] introduced RecipeQA dataset to evaluate M3C. Our first contribution is the introduction of two new M3C datasets- WoodworkQA and DecorationQA with 16K and 10K instructional procedures, respectively. We then evaluate M3C using a textual cloze style question-answering task and highlight an inherent bias in the question answer generation method from [35] that enables a naive baseline to cheat by learning from only answer choices. This naive baseline performs similar to a popular method used in question answering- Impatient Reader [6] that uses attention over both the context and the query. We hypothesized that this naturally occurring bias present in the dataset affects even the best performing model. We verify our proposed hypothesis and propose an algorithm capable of modifying the given dataset to remove the bias elements. Finally, we report our performance on the debiased dataset with several strong baselines. We observe that the performance of all methods falls by a margin of 8% - 16% after correcting for the bias. We hope these datasets and the analysis will provide valuable benchmarks and encourage further research in this area.

Abstract (translated)

URL

https://arxiv.org/abs/2104.10139

PDF

https://arxiv.org/pdf/2104.10139.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot