Paper Reading AI Learner

Playing Lottery Tickets with Vision and Language

2021-04-23 22:24:33
Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen, Yu Cheng, Shuohang Wang, Jingjing Liu

Abstract

Large-scale transformer-based pre-training has recently revolutionized vision-and-language (V+L) research. Models such as LXMERT, ViLBERT and UNITER have significantly lifted the state of the art over a wide range of V+L tasks. However, the large number of parameters in such models hinders their application in practice. In parallel, work on the lottery ticket hypothesis has shown that deep neural networks contain small matching subnetworks that can achieve on par or even better performance than the dense networks when trained in isolation. In this work, we perform the first empirical study to assess whether such trainable subnetworks also exist in pre-trained V+L models. We use UNITER, one of the best-performing V+L models, as the testbed, and consolidate 7 representative V+L tasks for experiments, including visual question answering, visual commonsense reasoning, visual entailment, referring expression comprehension, image-text retrieval, GQA, and NLVR$^2$. Through comprehensive analysis, we summarize our main findings as follows. ($i$) It is difficult to find subnetworks (i.e., the tickets) that strictly match the performance of the full UNITER model. However, it is encouraging to confirm that we can find "relaxed" winning tickets at 50%-70% sparsity that maintain 99% of the full accuracy. ($ii$) Subnetworks found by task-specific pruning transfer reasonably well to the other tasks, while those found on the pre-training tasks at 60%/70% sparsity transfer universally, matching 98%/96% of the full accuracy on average over all the tasks. ($iii$) Adversarial training can be further used to enhance the performance of the found lottery tickets.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11832

PDF

https://arxiv.org/pdf/2104.11832.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot