Paper Reading AI Learner

Improve Vision Transformers Training by Suppressing Over-smoothing

2021-04-26 17:43:04
Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, Qiang Liu

Abstract

Introducing the transformer structure into computer vision tasks holds the promise of yielding a better speed-accuracy trade-off than traditional convolution networks. However, directly training vanilla transformers on vision tasks has been shown to yield unstable and sub-optimal results. As a result, recent works propose to modify transformer structures by incorporating convolutional layers to improve the performance on vision tasks. This work investigates how to stabilize the training of vision transformers \emph{without} special structure modification. We observe that the instability of transformer training on vision tasks can be attributed to the over-smoothing problem, that the self-attention layers tend to map the different patches from the input image into a similar latent representation, hence yielding the loss of information and degeneration of performance, especially when the number of layers is large. We then propose a number of techniques to alleviate this problem, including introducing additional loss functions to encourage diversity, prevent loss of information, and discriminate different patches by additional patch classification loss for Cutmix. We show that our proposed techniques stabilize the training and allow us to train wider and deeper vision transformers, achieving 85.0\% top-1 accuracy on ImageNet validation set without introducing extra teachers or additional convolution layers. Our code will be made publicly available at this https URL .

Abstract (translated)

URL

https://arxiv.org/abs/2104.12753

PDF

https://arxiv.org/pdf/2104.12753.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot