Paper Reading AI Learner

Real-Time Video Super-Resolution by Joint Local Inference and Global Parameter Estimation

2021-05-06 16:35:09
Noam Elron, Alex Itskovich, Shahar S. Yuval, Noam Levy

Abstract

The state of the art in video super-resolution (SR) are techniques based on deep learning, but they perform poorly on real-world videos (see Figure 1). The reason is that training image-pairs are commonly created by downscaling a high-resolution image to produce a low-resolution counterpart. Deep models are therefore trained to undo downscaling and do not generalize to super-resolving real-world images. Several recent publications present techniques for improving the generalization of learning-based SR, but are all ill-suited for real-time application. We present a novel approach to synthesizing training data by simulating two digital-camera image-capture processes at different scales. Our method produces image-pairs in which both images have properties of natural images. Training an SR model using this data leads to far better generalization to real-world images and videos. In addition, deep video-SR models are characterized by a high operations-per-pixel count, which prohibits their application in real-time. We present an efficient CNN architecture, which enables real-time application of video SR on low-power edge-devices. We split the SR task into two sub-tasks: a control-flow which estimates global properties of the input video and adapts the weights and biases of a processing-CNN that performs the actual processing. Since the process-CNN is tailored to the statistics of the input, its capacity kept low, while retaining effectivity. Also, since video-statistics evolve slowly, the control-flow operates at a much lower rate than the video frame-rate. This reduces the overall computational load by as much as two orders of magnitude. This framework of decoupling the adaptivity of the algorithm from the pixel processing, can be applied in a large family of real-time video enhancement applications, e.g., video denoising, local tone-mapping, stabilization, etc.

Abstract (translated)

URL

https://arxiv.org/abs/2105.02794

PDF

https://arxiv.org/pdf/2105.02794.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot