Paper Reading AI Learner

Flow Guided Transformable Bottleneck Networks for Motion Retargeting

2021-06-14 21:58:30
Jian Ren, Menglei Chai, Oliver J. Woodford, Kyle Olszewski, Sergey Tulyakov

Abstract

Human motion retargeting aims to transfer the motion of one person in a "driving" video or set of images to another person. Existing efforts leverage a long training video from each target person to train a subject-specific motion transfer model. However, the scalability of such methods is limited, as each model can only generate videos for the given target subject, and such training videos are labor-intensive to acquire and process. Few-shot motion transfer techniques, which only require one or a few images from a target, have recently drawn considerable attention. Methods addressing this task generally use either 2D or explicit 3D representations to transfer motion, and in doing so, sacrifice either accurate geometric modeling or the flexibility of an end-to-end learned representation. Inspired by the Transformable Bottleneck Network, which renders novel views and manipulations of rigid objects, we propose an approach based on an implicit volumetric representation of the image content, which can then be spatially manipulated using volumetric flow fields. We address the challenging question of how to aggregate information across different body poses, learning flow fields that allow for combining content from the appropriate regions of input images of highly non-rigid human subjects performing complex motions into a single implicit volumetric representation. This allows us to learn our 3D representation solely from videos of moving people. Armed with both 3D object understanding and end-to-end learned rendering, this categorically novel representation delivers state-of-the-art image generation quality, as shown by our quantitative and qualitative evaluations.

Abstract (translated)

URL

https://arxiv.org/abs/2106.07771

PDF

https://arxiv.org/pdf/2106.07771.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot