Paper Reading AI Learner

Encouraging Intra-Class Diversity Through a Reverse Contrastive Loss for Better Single-Source Domain Generalization

2021-06-15 07:04:39
Thomas Duboudin (imagine), Emmanuel Dellandréa, Corentin Abgrall, Gilles Hénaff, Liming Chen

Abstract

Traditional deep learning algorithms often fail to generalize when they are tested outside of the domain of training data. Because data distributions can change dynamically in real-life applications once a learned model is deployed, in this paper we are interested in single-source domain generalization (SDG) which aims to develop deep learning algorithms able to generalize from a single training domain where no information about the test domain is available at training time. Firstly, we design two simple MNISTbased SDG benchmarks, namely MNIST Color SDG-MP and MNIST Color SDG-UP, which highlight the two different fundamental SDG issues of increasing difficulties: 1) a class-correlated pattern in the training domain is missing (SDG-MP), or 2) uncorrelated with the class (SDG-UP), in the testing data domain. This is in sharp contrast with the current domain generalization (DG) benchmarks which mix up different correlation and variation factors and thereby make hard to disentangle success or failure factors when benchmarking DG algorithms. We further evaluate several state-of-the-art SDG algorithms through our simple benchmark, namely MNIST Color SDG-MP, and show that the issue SDG-MP is largely unsolved despite of a decade of efforts in developing DG algorithms. Finally, we also propose a partially reversed contrastive loss to encourage intra-class diversity and find less strongly correlated patterns, to deal with SDG-MP and show that the proposed approach is very effective on our MNIST Color SDG-MP benchmark.

Abstract (translated)

URL

https://arxiv.org/abs/2106.07916

PDF

https://arxiv.org/pdf/2106.07916.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot